A New Simulation Approach to Model Complex Fracture Networks in the Shale Formation Considering Gas Desorption

نویسنده

  • Xinfang Ma
چکیده

Hydraulic fracturing in shale gas reservoirs has usually resulted in complex fracture network. The results of micro-seismic monitoring showed that the nature and degree of fracture complexity must be clearly understood to optimize stimulation design and completion strategy. This is often called stimulated reservoir volume (SRV). In the oil & gas industry, stimulated reservoir volume has made the shale gas exploitation and development so successful, so it is a main technique in shale gas development. The successful exploitation and development of shale gas reservoir has mainly relied on some combined technologies such as horizontal drilling, multi-stage completions, innovative fracturing, and fracture mapping to engineer economic completions. Hydraulic fracturing with large volumes of proppant and fracturing fluids will not only create high conductivity primary fractures but also stimulate adjacent natural fractures. Fracture network forming around every hydraulic fracture yields a stimulated reservoir volume. A model of horizontal wells which was based on a shale gas reservoir after volume fracturing in China was established to analyze the effect of related parameters on the production of multi-fractured horizontal wells in this paper. The adsorbed gas in the shale gas reservoir is simulated by dissolved gas in the immobile oil. The key to simulate SRV is to accurately represent the hydraulic fractures and the induced complex natural fracture system. However, current numerical simulation methods, such as dual porosity modeling, discrete modeling, have the following limitations: 1) time-consuming to set up hydraulic and natural fracture system; 2) large computation time required. In this paper, the shape of the stimulated formation is described by an expanding ellipsoid. Simplified stimulated zones with higher permeability were used to model the hydraulic fracture and the induced complex natural fracture system. In other words, each primary fracture has an enhanced zone, namely SRV zone. This method saves much developing fine-grid time and computing time. Compared with the simulation results of fine-grid reference model, it has shown that this simplified model greatly decreases simulation time and provides accurate results. In order to analyze the impacts of related parameters on production, a series of simulation scenarios and corresponding production performance were designed. Optimal design and analyses of fracturing parameters and the formation parameters have been calculated in this model. Simulation results showed that the number of primary fractures, half length, SRV half-width and drop-down have great effects on the post-fracturing production. Formation anisotropies also control the production performance while the conductivity of the primary fractures and SRV permeability do not have much impact on production performance. The complexity of stimulated reservoir volume has strong effect on gas well productivity. Fracture number mainly affects the early time production performance. The increase of SRV width cannot enlarge the drainage area of the multi-fractured horizontal wells, but it can improve the recovery in its own drainage region. Permeability anisotropies have much effect on production rate, especially the late time production rate. The results prove that horizontal well with volume fracturing plays an irreplaceable role in the development of ultra-low permeability shale gas reservoir.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop...

متن کامل

Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Da...

متن کامل

Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considere...

متن کامل

Seepage Mechanism and Transient Pressure Analysis of Shale Gas

The current research of nonlinear seepage theory of shale-gas reservoir is still in its infancy. According to the characteristics of shale gas in adsorption-desorption, diffusion, slippage and seepage during accumulation, migration and production, a mathematical model of unstable seepage in dual-porosity sealed shale-gas reservoir was developed while considering Knudsen diffusion, slip-flow eff...

متن کامل

A Fully Integrated Approach for Better Determination of Fracture Parameters Using Streamline Simulation; A gas condensate reservoir case study in Iran

      Many large oil and gas fields in the most productive world regions happen to be fractured. The exploration and development of these reservoirs is a true challenge for many operators. These difficulties are due to uncertainties in geological fracture properties such as aperture, length, connectivity and intensity distribution. To successfully address these challenges, it is paramount to im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016